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Vector Valued RKHS

Vector Valued Reproducing Kernel Hilbert Space (RKHS)

Let £ denote a coefficient Hilbert space, and Q2 a set.

We say a linear subspace Hs C F(Q,€) is a
vector-valued RKHS to mean:

@ 7 has an inner product turning it into a Hilbert space, and

@ all point evaluations are bounded. That is for all w € Q, the
linear map

o(w):Heg — &

given by f — f(e) is bounded.
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Vector Valued RKHS

Reproducing Kernel

We want to apply Riesz representation as in the scalar case.
So we proceed as follows: Fix w € Q,and e € &:

Q f— (f(w),e)s: He — Cis a bounded.

© Apply Riesz Representation to obtain a unique
K(-,w)e € He such that

<f’ K(a W)e>7-tg = <f(W)’ e>$~

© One observes that K(z, w) = ®(z)d(w)* for all z, w € Q so
that we get a map

K:QxQ— B(&)

called the reproducing kernel of #.
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Vector Valued RKHS

Reproducing Kernel (Continued)

Recall that we have a notion of positivity for operator-valued
reproducing kernels:

Definition
Given a function K : Q x Q — B(€) we say K is positive to
mean for any finite number z4, ..., z, € Q the matrix

K(z1,z1) ... K(z1,2zn)

K(zn,z1) ... K(zn,zn)

is positive in Mp(B(E)) ~ B(E").

It follows immediately from the factorization above that the
reproducing kernels are positive.
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Vector Valued RKHS

Vector Valued Moore

We can go the opposite direction first. Given a positive map
K:QxQ— B(€)

we use the positivity to define an inner product on the span of
K (-, w)eranging over w € €, and e € £. The details of this
result is known as Moore’s Theorem.

Theorem (Vector Valued Moore)[7]

If K:Q x Q — B(€) a positive function. Then there exists a
unique £-valued RKHS #H¢(K) on Q with K as its reproducing
kernel. Moreover the span of

{K(‘,w)e: weQ,eeé’}

can be identified with a dense subspace in H¢(K).
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Vector Valued RKHS

Vector Valued Moore (Consequence)

@ As a consequence of Moore’s theorem we see that
K : Q x Q — B(€) being positive is equivalent to the
existence of an auxiliary RKHS H¢(K) such that we can
factor our map

K(z,w) = o(2)d(w)*

for some function ¢ : Q — B(H¢(K),E).

© Indeed because if K is positive, the function ® above is
exactly bounded point evaluation from the RKHS #H¢(K)
obtained by Moore’s theorem.
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Vector Valued RKHS

Multipliers

@ Given F: Q — B(£,&,), and f € He we define
Ff:Q— & byw— F(w)of(w).
© We say F is a multiplier from He — He, to mean that

F feHte,

forall f € He.

© The above follows from bounded point evaluation, and an
application of the Closed Graph theorem that each
multiplier induces a bounded operator.

© We denote M(&) the multiplier algebra endowed with the
operator norm."

'Only an algebra when £=&,



Commutative Setting
O000000e

Vector Valued RKHS

Eigenvector Property

@ A very useful fact in the scalar setting is that the kernel
functions are eigenvectors for adjoints of multipliers.

© We have a similar-type result that says
MEKe, (-, 2)e = Ke(-,2)F(2)"e (1)

forallze Q, e e &,.

© The above follows from an inner product calculation along
with the reproducing property, and density of kernel
functions.

© For ease of notation, we will drop the subscripts on the
kernel function from here on.
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The Drury Averson Space

Drury Averson

We will focus on a specific RKHS known as the Drury-Averson
space.

© Denote K(z,w) = —— :BY x B¢ — C.

1—(zw)
© Form an operator valued kernel
K(z,w)® lg : B9 x BY — B(E).
The Drury-Averson space (or £-valued version) is the RKHS
on B induced by the reproducing kernel K(z, w) ® lg, and
denoted H2.
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Characterization of the Schur Class

Characterization of the Schur Class

Theorem (Ball, Vinnikov, Trent 2001 [2])
Let F € M(&,€&,). The following are equivalent:

@ F is a contractive multiplier.

© There exists an auxiliary Hilbert space #, and a unitary

colligation
Al B TP
cC D *

that realizes F. Meaning that for all z € B

d d
F(z)=D+C(I-> zA)"(>_zB) )
i=1

i=1
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Characterization of the Schur Class

Characterization of the Schur Class °
continued

Theorem (Ball, Vinnikov, Trent 2001 [2])

© The function Kr given by

Ke(z,w) = K(z,w)® le, — F(2)(K(z,w) ® l¢)F(w)*

defines a positive kernel Kg : BY x BY — B(E,). That is there
exist an auxillary Hilbert space #, and function
H:BY — B(H,&.) such that

Ke(z,w) = H(z)H(w)*

© We can obtain a contractive colligation that realizes F.

2

2Write down theorem on board
3The space of contractive multipliers is referred to as the Schur Class
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Characterization of the Schur Class

Proof of Schur Class Characterization

Proof: (1 <— 3)
The first equivalence follows from the "eigenvector-type"
property mentioned earlier. Indeed suppose ||F|| < 1, and let

Xy,....,Xn € Q,and ey, ..., e, € &,.
From contractivity we get

HZM}E— - Z))e; HZK . Zj e,’
i

Since MEK(-, z))ej = K(-, zj))F(z;)*e; we have

HZK .Z)F(z)" e <HZK . Z))e;

g*

5*
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Characterization of the Schur Class

Proof of Schur Class Characterization

Expanding out the inner product we obtain
> ((K(zi, z) — F(2)K(zi, 2)F(2)"))8, €)e. > 0.
ij
As required to show positivity of

K(z,w) — F(2)K(z, w)F(w)* = ’—1":(Z<;FV(V">")

For the converse, we can reverse the calculation done above,
and since the span of kernel functions is dense in Hg, it follows
that F* is contractive, and hence F is contractive.
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Characterization of the Schur Class

Lurking Isometry Step

Proof: (3 — 2)

Since K is positive, we can apply Moore’s theorem to obtain a
Hilbert space #¢, (Kr) = #H, and a function
H:BY — B(He,, &) such that for

le. — F(z)F(w)*
1—(z,w)

= H(z)H(w)* for all z, w € BC.

Reorganize the equation, and rewrite the inner product in terms
of rows and columns operators to obtain

zy

] H(z)*)"

wy

le. + ( H(w)* = H(2)H(w)" + F(2)F(w)"

Zg

Wa

(3)
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Characterization of the Schur Class

Proof of Schur Class Characterization

The equation (3) above is what will allow us to well defined
linear map acting isometrically on a subspace of 1 @ &,
Indeed define

wiH(w)*e.
— : d c 1y
Do : span{ WaH(w) e, weB ,e*eé‘*} CHY @&
€4

and define V; on Dy by the linear map that sends

wiH(w)*e,
. H(w)*e,
wgH(w)*e, F(w)*e.
€4

|cuae
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Characterization of the Schur Class

Proof of Schur Class Characterization

Using (3) in the following computation we obtain

| [Fowee [~ arommon + FanFwye. e,
wiH(w)*e, wiH(w)*e,
= (&, e*>g* + ( ] , ] >’H®d
woH(w)* e, WgH(w)* e,
wiH(w)* e,

= || WaH(w)"e, H2
(M
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Characterization of the Schur Class

Proof of Schur Class Characterization

@ Now Vj extends uniquely to an isometry on the closure of
Dy in H® & &,

© Observe that for any isometric extension W of V; a quick
calculation shows

7J_ N
W(Do ) C V5 (Do)
© This means the one obstacle in extending to a unitary is
one of dimension. That is if dim(Dy ") > dim(Vg(Do)t).

© We can resolve the problem by direct summing on a Hilbert
space to the co-domain such that the dimension match.
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Characterization of the Schur Class

Proof of Schur Class Characterization

@ That is we extend V{ to a unitary

« _ |AY C*| sad ~
oo SR e

where H can be identified as a subspace of the Hilbert
space H.

@ Next will will use Vi, and how it acts on Dg to show for all
z e BY

d d

F(z)* =D"+ (> _Bfz})(lg— > Aizf)'C*

i=1 i=1

© But first we outline an argument on why the inverse exists
that we will return to later.
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Characterization of the Schur Class

Proof of Schur Class Characterization

@ Fix take z € By, and define
2(2) = [zl . zglg] HZ > .

One sees that ||Z(2)|]? = 3 |z < 1.

© Then since A and Z(z) just operators between Banach
spaces we get

1Z()AIl < [12(2)]] A} < 1.

© By standard C*-theory we know (I; — Z(z)A)~" exist in

B(#) and is given by norm limit geometric series

o o

d
(ly = Z@A) " =) (Z@2A)" = (> zA)"

n=0 n=0 i=1
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Characterization of the Schur Class

Proof of Schur Class Characterization

© Since V* is an extension of V; we obtain the following
system of equations: Fix w € BY, e, € &,

wiH(w)*e,
A L Ay C ~ [H(w)*e,
By .. B D*| |wgH(w)*e,| |F(w)*e,
€
© Which turns into
ZA*Z, )*e. + C*e, = H(z)"e.

ZB*Z, w)*e, + D*e, = F(z)"e
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Characterization of the Schur Class

Proof of Schur Class Characterization

@ Solve for H(w)*e. in the first equation to obtain
d
Hw) e, = (I; — Y _Aiz) 'Cre.
Q Substitute H(w)*e, into the second equation to obtain
d d
F(w)'e.=D"e.+ (> _Bw)(ly— > _ AW) 'C’e..

@ Since this hold for all e, we have equality in B(&,), and
lastly take adjoins to obtain

d
F(w)= D+ C(lg — Zw, O wiB)
i=1

as required.
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Characterization of the Schur Class

Proof of Schur Class Characterization

2 = 1)
Suppose that we have a unitary colligation that realizes our
multiplier F. Expanding UU* = | we obtain:

AA* + BB* AC* + BD*} _ {lﬁ 0] (6)
CA* + DB* CC* + DD* 0 e,
This in turns gives us
Q /; - AA*=BB"
Q /, — DD* = CC*
Q@ -DB* = CA*
Q -BD*=AC*
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Characterization of the Schur Class

Proof of Schur Class Characterization

Fix z € BY, and we will show I, — F(z)*F(w) >0 4.
Indeed, expand Ic, — F(z)*F(z), use the resolvent identity, and
the four inequalities above to obtain

le. — F(z)F(w)*

=Cly = > _ zA) (1= (z,w)(lg = Y _Awj)~'C* @
=(I-(z, W>)H(2)H(W)*

>0

where H(z) = C(l; — > ziA;)~'. Which concludes our proof
that ||F|| < 1. O

“Showing ||F(z)|| < 1 not sufficient for positive kernel.



Commutative Setting
0000000000000 0e0

Characterization of the Schur Class

Robustness of Transfer Functions

@ A key step in the proof was the invertibility of
d
= zA = Iz — Z(2)A.
i=1

@ All we needed was that:
@ Ais a column contraction

® Z(z)=[zly .. zaly] astrict row contraction
© This means that for any strict row-contraction
Z=1[Z; .. Zy] where Z; € Afor some operator algebra

A, we have invertability of

d
I-ZA= 1113 Y Z@A
i=1
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Characterization of the Schur Class

Robustness of Transfer Functions

@ For example suppose A= | ... | is a column contraction

as in the proof.

Q Let X = [X; ..Xy] be ad-tuple of n x n matrices such
[[ XX || = || X1 X{ + ... + XgXj|| < 1. That is assume X is a
strict row contraction.

© By a similar argument used at level 1 (i.e. BY), we can
show that

d
h®ly =Y Xi®A
i=1

is invertable in M,(B(#)), where ® denotes the Kronecker
product.
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Non-Commutative Formal RKHS

Non-Commutative Setting

The Non-Commutative Setting
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Non-Commutative Formal RKHS

Free Monoid on d-generators

@ Fix aninteger d > 1. A word of length n is any finite string
of letters w = wy...w, where w; € {1,2..., d}.

© Let F, denote the free monoid on d generators, where
elements are words, the operation is the concatenation of
words, and the neutral element is the empty word (.

© We have map from Fy to itself namely transposition
where w’ = w,w,_1...ws.
© Given a non-commutative in-determinant z = (zq, ..., z4),

we write

w

V4 — ZW1ZW2"'ZWn

for example if d > 4, and w = 11421 we have

2V = 222,7,2;.
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Non-Commutative Formal RKHS

Formal Power Series

@ We denote the set of all formal power series with
coefficients in £ by

EUz)) = { Yzt ifue 5}.

a€clFy

© &(z) denotes all formal power series with finite support (i.e.
polynomials).

© Given another non-commuting indeterminate
w = (wy, ..., Wy) we denote £((z, w)) the formal power
series in z and w.
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Non-Commutative Formal RKHS

Non-Commutative Formal RKHS (NFRKHS)

Let € be a Hilbert space, and z = (zy, ..., Zg) non-commuting
indeterminants. A linear subspace

HE,nc C 8<<Z>>

is called a Non-commutative Formal RKHS (NFRKHS) when:

@ #He e comes equipped with an inner product which turns it into a
Hilbert space.

© Foreach v € Fy, the map &, : He nc — £ given by

> hz% e,

aclFy

is bounded.
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Non-Commutative Formal RKHS

How Does Reproducing Kernels Arise?

@ Since coefficients uniquely determine the power-series we
obtain a standard vector valued RKHS by viewing the
coefficients as functions (f,) : Fg — £.

© Obtain a vector valued reproducing kernel
(Oz,ﬂ) — Kaﬁ Fg xFg— B(g)
© This induces a formal power series

Kizw)= > Kz w® e B(&)((z, w))

a,BEFy

which is positive in a sense, satisfy a reproducing property
(shown on next slide).
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Non-Commutative Formal RKHS

NF Reproducing Kernel

FOI’ H - Hé"nc
@ For fixed o € Fy, and e € £ we denote

Ku(z)e:=> Kope 2’ e H
B

© We denote

K(,w)e:=Y" Ki(z)e w*' e H{(w))

© And we have a reproducing property

(f, K(-, W)€ axrwyy = (F(W), €)gwy)xe (8)

which holds forall f € H, e € £.°
SWrite out definition on black board
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Non-Commutative Formal RKHS

NF Reproducing Kernels

Definition
We say the formal power series

Kizw)= > Koz w? € B(€)((z, w))
a,B€Fy
is a Non-commutative Formal reproducing kernel for #¢ nc
when:
Q Ku(z)ee Hepcforalla e Fyand e € €.
©Q K(z, w) satisfy the reproducing property in (8).

It can be shown that each NF reproducing kernel uniquely
determines a NF RKHS just (see [3] for details).
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Non-Commutative Formal RKHS

NF Multipliers

We also have multipliers in this formal setting.
A formal power series

F =Y F.z%€ B(& &) ((2))

can act on elements in £((z)) via a Cauchy product. That is for
f=> f,z* € £((z)) we define

Ff= Z( 3 Fgfg)ZO‘ € £.((2)).

(7 a:ﬁa
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Non-Commutative Formal RKHS

NF Multipliers

@ Given two NF RKHS ¢ ne, and He, e We say
F e B(&,&,)((2)) is a left-multiplier from He ne — He, nc
to mean that
F fE Hg*7nc

forall f € He ne.

© Again by an application of the Closed Graph theorem, and
continuity of evaluation, one observe that each multipliers
induces a bounded operator.

© When & = &, we denote M ¢(€) the multiplier algebra
equipped with the operator norm.
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NC-Hardy Space

NC-Hardy Space

Definition
Let £ be a Hilbert space, and z = (z, ..., Zy) non-commuting
in-determinants. Define

Hope = {f= 3 £z fIF = 3 IIfull < oo}

a€clFy a€clfy

@ We equip #2 ne.c With the £o-inner product induced by &:

<Z faZ®, Z gﬂzﬁ> = Z (fas Ga)e

aclFy BEF 4 a€Fy

and it follows immediately that evaluation functions are
bounded turning #%, . into a NFRKHS.

@ When £ = C we refer to #2, as the "NC-Hardy space".
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NC-Hardy Space

NF Reproducing Kernel

What is the NF-reproducing kernel of HZ .
@ Consider Ka,,@ = 5%5 ®lg:FgxFqg— B(E).
© One sees that K,(z)e = ez ”Hgnc, and checks that

Kne(z, w) Z 2w
aclfy

satisfy the reproducing property in (8). Hence we have the
NF-reproducing kernel for ”Hg ne-
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Characterization of the Non Commutative Schur Class

Characterization of the Non Commutative Schur Class

Theorem (Ball,Vinnikov - 2003,2005 [3],[1])
Let F € Mpc(&,E.). The following are equivalent:

@ F is a contractive multiplier.

@ There exists an auxiliary Hilbert space #, and a unitary

colligation
Ay B oy
cC D *

where F can be realises as a formal power series

d
F(z) = D+Y (> CA*Biz*)z; = D+C(I-Z(2)A)~'Z(2)B (9)

i=1 a€F
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Characterization of the Non Commutative Schur Class

Characterization of the Schur Class
continued

Theorem (Ball,Vinnikov - 2003,2005 [3],[1])
© The formal power series Kg € B(E.)((z, w)) given by

Kr(z,w) = Kne(z, w) — F(2)Kne(z, w)F(w)*
defines an NF reproducing kernel.
© The colligation U that realizes F can be chosen contractive.

For F(z2) € B(E,&.)((2)) we define F(z)* := )" F;zar, and the
product is defined by Cauchy products of formal power series.
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Intro to NC-Function Theory

@ We define the row-ball
BY = {xz[ |_|M,, |yxx*||<1}

@ We have two operations on BS,. Given X, Y € BS, at
level n, and m respectively, and single invertable matrix
S € My(C):

XeoY:=[XiaY: .. Xg® Yy

10
STIXS:=[S'XS ... S7T'X4S] 10)

© We say f is an nc-function on BZ, to mean f is graded,
preserves direct sums, and respects similarities.
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Intro To NC-Function Theory

© We denote HY,, all uniformly bounded nc-funtions on the
the row-ball. That is nc functions f on the row ball such that

[flloo :="sup [|[f(X)|| < oo
ZecBe,

where the norm on the right is taken in M,(C) when X is at
level n.

© For example all co-ordinate function f;(Z) = Z; are in H35,,,

and polynomials are in Hyg,,.

Q It a well know result that for nc-functions: Locally bounded
at each level implies analytic at each level. Hence it follows
that every function in Hyj, is analytic at every level.



Connection to NC-Function Theory
[e]e] lelele]

NC-Hardy Space As a Space of NC Functions

@ We can view elements of the NC-Hardy space as
nc-functions on the row ball.

@ Given a formal power series 3. c,z* € H2, one can
a€cFy

show that for each fixed X € B,

o0

SPIRE

n=0 |a|=n
is norm convergent in M,(C), where X is at level n.
© Define F(X) = i > ¢, X%, and one uses the fact that

n=0|a|=n
polynomials are nc functions to show F is an nc-function.
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NC-functions and Left Multipliers

© The connection between HSS,, and Left-Multipliers of HZ,,
was first seen by Arias and Popescu working over the
operatorial closed unit ball, and independently by Davidson

and Pitts in the language of operator algebras.

© But recently Salomon, Shalit, Shamovich ([8]) formulated
the result in the nc-function theory language over the
row-ball.

Theorem Salomon, Shalit, Shamovich (2018) [8]

Let ® be a nc-function on BY,,.
Then ¢ is a left-multiplier of 72, if, and only if & € HX.
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Conclusion

Given a contractive

multiplier £ of the Given a contractive multiplier
Drury-Averson space F of the NC-Hardy space

I

There exists a transfer

function ¢ that realizes F y
There exists a transfer
v function @ that realizes F

® is a nc-function bounded
by 1 on the row ball

Y
l ¢ restricted to level one
¢ Sis a left multiplier of is a multiplier of the
the NC-Hardy Space and Drury-Averson space
agree with F on level 1

Although @ is not unique, we can chose @ to have the same norm as F.
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Some Applications

@ NC-Inner Outer Factorization (Jury, Martin, Shamovich [6])

© Characterization of the Extreme points of the multiplier
algebra of the Drury-Averson space.
(Jury, Martin, Hartz [5], [4])
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