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Vector Valued RKHS

Vector Valued Reproducing Kernel Hilbert Space (RKHS)

Let E denote a coefficient Hilbert space, and Ω a set.

Definition
We say a linear subspace HE ⊆ F(Ω, E) is a
vector-valued RKHS to mean:

1 HE has an inner product turning it into a Hilbert space, and
2 all point evaluations are bounded. That is for all w ∈ Ω, the

linear map
Φ(w) : HE → E

given by f 7→ f (e) is bounded.
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Vector Valued RKHS

Reproducing Kernel

We want to apply Riesz representation as in the scalar case.
So we proceed as follows: Fix w ∈ Ω, and e ∈ E :

1 f 7→ ⟨f (w),e⟩E : HE → C is a bounded.
2 Apply Riesz Representation to obtain a unique

K (·,w)e ∈ HE such that

⟨f ,K (·,w)e⟩HE = ⟨f (w),e⟩E .

3 One observes that K (z,w) = Φ(z)Φ(w)∗ for all z,w ∈ Ω so
that we get a map

K : Ω× Ω → B(E)

called the reproducing kernel of HE .
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Vector Valued RKHS

Reproducing Kernel (Continued)

Recall that we have a notion of positivity for operator-valued
reproducing kernels:

Definition
Given a function K : Ω× Ω → B(E) we say K is positive to
mean for any finite number z1, ..., zn ∈ Ω the matrixK (z1, z1) ... K (z1, zn)

... ...
K (zn, z1) ... K (zn, zn)


is positive in Mn(B(E)) ≃ B(En).

It follows immediately from the factorization above that the
reproducing kernels are positive.
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Vector Valued RKHS

Vector Valued Moore

We can go the opposite direction first. Given a positive map

K : Ω× Ω → B(E)

we use the positivity to define an inner product on the span of
K (·,w)e ranging over w ∈ Ω, and e ∈ E . The details of this
result is known as Moore’s Theorem.

Theorem (Vector Valued Moore)[7]
If K : Ω× Ω → B(E) a positive function. Then there exists a
unique E-valued RKHS HE(K ) on Ω with K as its reproducing
kernel. Moreover the span of{

K (·,w)e : w ∈ Ω,e ∈ E
}

can be identified with a dense subspace in HE(K ).
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Vector Valued RKHS

Vector Valued Moore (Consequence)

1 As a consequence of Moore’s theorem we see that
K : Ω× Ω → B(E) being positive is equivalent to the
existence of an auxiliary RKHS HE(K ) such that we can
factor our map

K (z,w) = Φ(z)Φ(w)∗

for some function Φ : Ω → B(HE(K ), E).
2 Indeed because if K is positive, the function Φ above is

exactly bounded point evaluation from the RKHS HE(K )
obtained by Moore’s theorem.
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Vector Valued RKHS

Multipliers

1 Given F : Ω → B(E , E∗) , and f ∈ HE we define
F f : Ω → E∗ by w 7→ F (w) ◦ f (w).

2 We say F is a multiplier from HE → HE∗ to mean that

F f ∈ HE∗

for all f ∈ HE .
3 The above follows from bounded point evaluation, and an

application of the Closed Graph theorem that each
multiplier induces a bounded operator.

4 We denote M(E) the multiplier algebra endowed with the
operator norm.1

1Only an algebra when E=E∗
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Vector Valued RKHS

Eigenvector Property

1 A very useful fact in the scalar setting is that the kernel
functions are eigenvectors for adjoints of multipliers.

2 We have a similar-type result that says

M∗
F KE∗(·, z)e = KE(·, z)F (z)∗e (1)

for all z ∈ Ω,e ∈ E∗.
3 The above follows from an inner product calculation along

with the reproducing property, and density of kernel
functions.

4 For ease of notation, we will drop the subscripts on the
kernel function from here on.
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The Drury Averson Space

Drury Averson

We will focus on a specific RKHS known as the Drury-Averson
space.

1 Denote K (z,w) = 1
1−⟨z,w⟩ : B

d × Bd → C.

2 Form an operator valued kernel
K (z,w)⊗ IE : Bd × Bd → B(E).

The Drury-Averson space (or E-valued version) is the RKHS
on Bd induced by the reproducing kernel K (z,w)⊗ IE , and
denoted H2

E .
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Characterization of the Schur Class

Characterization of the Schur Class

Theorem (Ball, Vinnikov, Trent 2001 [2])
Let F ∈ M(E , E∗). The following are equivalent:

1 F is a contractive multiplier.

2 There exists an auxiliary Hilbert space H, and a unitary
colligation

U =


A1 B1
... ...
Ad Bd
C D

 :
H
⊕
E

→
H⊕d

⊕
E∗

that realizes F . Meaning that for all z ∈ Bd

F (z) = D + C(I −
d∑

i=1

ziAi)
−1(

d∑
i=1

ziBi) (2)
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Characterization of the Schur Class

Characterization of the Schur Class 3

continued

Theorem (Ball, Vinnikov, Trent 2001 [2])
3 The function KF given by

KF (z,w) = K (z,w)⊗ IE∗ − F (z)(K (z,w)⊗ IE)F (w)∗

defines a positive kernel KF : Bd × Bd → B(E∗). That is there
exist an auxillary Hilbert space H, and function
H : Bd → B(H, E∗) such that

KF (z,w) = H(z)H(w)∗

4 We can obtain a contractive colligation that realizes F .

2

2Write down theorem on board
3The space of contractive multipliers is referred to as the Schur Class
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Characterization of the Schur Class

Proof of Schur Class Characterization

Proof: (1 ⇐⇒ 3)

The first equivalence follows from the "eigenvector-type"
property mentioned earlier. Indeed suppose ||F || ≤ 1, and let
x1, ..., xn ∈ Ω, and e1, ...,en ∈ E∗.
From contractivity we get∣∣∣∣∣∣∑

i

M∗
F K (·, zi)ei

∣∣∣∣∣∣2
HE

≤
∣∣∣∣∣∣∑

i

K (·, zi)ei

∣∣∣∣∣∣2
HE∗

.

Since M∗
F K (·, zi)ei = K (·, zi)F (zi)

∗ei we have∣∣∣∣∣∣∑
i

K (·, zi)F (zi)
∗ei

∣∣∣∣∣∣2
HE

≤
∣∣∣∣∣∣∑

i

K (·, zi)ei

∣∣∣∣∣∣2
HE∗

.
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Characterization of the Schur Class

Proof of Schur Class Characterization

Expanding out the inner product we obtain∑
i,j

⟨(K (zi , zj)− F (zi)K (zi , zj)F (zj)
∗))ej ,ei⟩E∗ ≥ 0.

As required to show positivity of

K (z,w)− F (z)K (z,w)F (w)∗ =
I − F (z)F (w)∗

1 − ⟨z,w⟩
.

For the converse, we can reverse the calculation done above,
and since the span of kernel functions is dense in HE∗ it follows
that F ∗ is contractive, and hence F is contractive.
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Characterization of the Schur Class

Lurking Isometry Step

Proof: (3 =⇒ 2)

Since KF is positive, we can apply Moore’s theorem to obtain a
Hilbert space HE∗(KF ) = H, and a function
H : Bd → B(HE∗ , E∗) such that for

IE∗ − F (z)F (w)∗

1 − ⟨z,w⟩
= H(z)H(w)∗ for all z,w ∈ Bd .

Reorganize the equation, and rewrite the inner product in terms
of rows and columns operators to obtain

IE∗ + (

z1
...
zd

H(z)∗)∗

w1
...
wd

H(w)∗ = H(z)H(w)∗ + F (z)F (w)∗

(3)
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Characterization of the Schur Class

Proof of Schur Class Characterization

The equation (3) above is what will allow us to well defined
linear map acting isometrically on a subspace of H⊕d ⊕ E∗.
Indeed define

D0 := span
{

w1H(w)∗e∗
...

wdH(w)∗e∗
e∗

 : w ∈ Bd ,e∗ ∈ E∗
}
⊆ H⊕d ⊕ E∗

and define V ∗
0 on D0 by the linear map that sends
w1H(w)∗e∗

...
wdH(w)∗e∗

e∗

 7→
[
H(w)∗e∗
F (w)∗e∗

]
⊆ H⊕ E .
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Characterization of the Schur Class

Proof of Schur Class Characterization

Using (3) in the following computation we obtain∣∣∣∣∣∣[H(w)∗e∗
F (w)∗e∗

] ∣∣∣∣∣∣2= ⟨(H(w)H(w)∗ + F (w)F (w)∗)e∗,e∗⟩E∗

= ⟨e∗,e∗⟩E∗ + ⟨

w1H(w)∗e∗
...

wdH(w)∗e∗

 ,

w1H(w)∗e∗
...

wdH(w)∗e∗

⟩H⊕d

=
∣∣∣∣∣∣


w1H(w)∗e∗
...

wdH(w)∗e∗
e∗

 ∣∣∣∣∣∣2
(4)
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Characterization of the Schur Class

Proof of Schur Class Characterization

1 Now V ∗
0 extends uniquely to an isometry on the closure of

D0 in H⊕d ⊕ E∗.
2 Observe that for any isometric extension W of V ∗

0 a quick
calculation shows

W (D0
⊥
) ⊆ V ∗

0 (D0)
⊥.

3 This means the one obstacle in extending to a unitary is
one of dimension. That is if dim(D0

⊥
) > dim(V ∗

0 (D0)
⊥).

4 We can resolve the problem by direct summing on a Hilbert
space to the co-domain such that the dimension match.
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Characterization of the Schur Class

Proof of Schur Class Characterization

1 That is we extend V ∗
0 to a unitary

V ∗ =

[
A∗ C∗

B∗ D∗

]
H̃⊕d ⊕ E∗ → H̃ ⊕ E

where H can be identified as a subspace of the Hilbert
space H̃.

2 Next will will use V ∗
0 , and how it acts on D0 to show for all

z ∈ Bd

F (z)∗ = D∗ + (
d∑

i=1

B∗
i z∗

i )(IH̃ −
d∑

i=1

A∗
i z∗

i )
−1C∗

3 But first we outline an argument on why the inverse exists
that we will return to later.



Commutative Setting Non-Commutative Setting Connection to NC-Function Theory References

Characterization of the Schur Class

Proof of Schur Class Characterization

1 Fix take z ∈ Bd , and define

Z (z) =
[
z1IH̃ ... zd IH̃

]
: H̃⊕d → H̃.

One sees that ||Z (z)||2 =
∑

|zi |2 < 1.
2 Then since A and Z (z) just operators between Banach

spaces we get

||Z (z)A|| ≤ ||Z (z)|| ||A|| < 1.

3 By standard C∗-theory we know (IH̃ − Z (z)A)−1 exist in
B(H̃) and is given by norm limit geometric series

(IH̃ − Z (z)A)−1 =
∞∑

n=0

(Z (z)A)n =
∞∑

n=0

(
d∑

i=1

ziAi)
n
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Characterization of the Schur Class

Proof of Schur Class Characterization

3 Since V ∗ is an extension of V ∗
0 we obtain the following

system of equations: Fix w ∈ Bd , e∗ ∈ E∗

[
A∗

1 ... A∗
d C∗

B∗
1 ... B∗

d D∗

]
w1H(w)∗e∗

...
wdH(w)∗e∗

e∗

 =

[
H(w)∗e∗
F (w)∗e∗

]

4 Which turns into

(
d∑

i=1

A∗
i zi)H(w)∗e∗ + C∗e∗ = H(z)∗e∗

(
d∑

i=1

B∗
i zi)H(w)∗e∗ + D∗e∗ = F (z)∗e∗

(5)
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Characterization of the Schur Class

Proof of Schur Class Characterization

5 Solve for H(w)∗e∗ in the first equation to obtain

H(w)∗e∗ = (IH̃ −
d∑

i=1

A∗
i zi)

−1C∗e∗

6 Substitute H(w)∗e∗ into the second equation to obtain

F (w)∗e∗ = D∗e∗ + (
d∑

i=1

B∗
i wi)(IH̃ −

d∑
i=1

A∗
i wi)

−1C∗e∗.

7 Since this hold for all e∗ we have equality in B(E∗), and
lastly take adjoins to obtain

F (w) = D + C(IH̃ −
d∑

i=1

wiAi)
−1(

d∑
i=1

wiBi)

as required.
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Characterization of the Schur Class

Proof of Schur Class Characterization

(2 =⇒ 1)
Suppose that we have a unitary colligation that realizes our
multiplier F . Expanding UU∗ = I we obtain:[

AA∗ + BB∗ AC∗ + BD∗

CA∗ + DB∗ CC∗ + DD∗

]
=

[
IH̃ 0
0 IE∗

]
(6)

This in turns gives us
1 IH̃ − AA∗ = BB∗

2 IE∗ − DD∗ = CC∗

3 −DB∗ = CA∗

4 −BD∗ = AC∗



Commutative Setting Non-Commutative Setting Connection to NC-Function Theory References

Characterization of the Schur Class

Proof of Schur Class Characterization

Fix z ∈ Bd , and we will show IE∗ − F (z)∗F (w) ≥ 0 4.
Indeed, expand IE∗ − F (z)∗F (z), use the resolvent identity, and
the four inequalities above to obtain

IE∗ − F (z)F (w)∗

= C(IH̃ −
∑

ziAi)
−1(I − ⟨z,w⟩)(IH̃ −

∑
A∗

i w∗
i )

−1C∗

= (I − ⟨z,w⟩)H(z)H(w)∗

≥ 0

(7)

where H(z) = C(IH̃ −
∑

ziAi)
−1. Which concludes our proof

that ||F || ≤ 1.

4Showing ||F (z)|| ≤ 1 not sufficient for positive kernel.
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Characterization of the Schur Class

Robustness of Transfer Functions

1 A key step in the proof was the invertibility of

IH −
d∑

i=1

ziAi = IH̃ − Z (z)A.

2 All we needed was that:
A is a column contraction
Z (z) =

[
zi IH̃ ... zd IH̃

]
a strict row contraction

3 This means that for any strict row-contraction
Z =

[
Z1 ... Zd

]
where Zi ∈ A for some operator algebra

A, we have invertability of

I − ZA = IA ⊗ IH̃ −
d∑

i=1

Zi ⊗ Ai
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Characterization of the Schur Class

Robustness of Transfer Functions

1 For example suppose A =

A1
...
Ad

 is a column contraction

as in the proof.
2 Let X =

[
X1 ...Xd

]
be a d-tuple of n × n matrices such

||XX ∗|| = ||X1X ∗
1 + ...+ XdX ∗

d || < 1. That is assume X is a
strict row contraction.

3 By a similar argument used at level 1 (i.e. Bd ), we can
show that

In ⊗ IH̃ −
d∑

i=1

Xi ⊗ Ai

is invertable in Mn(B(H̃)), where ⊗ denotes the Kronecker
product.
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Non-Commutative Formal RKHS

Non-Commutative Setting

The Non-Commutative Setting
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Non-Commutative Formal RKHS

Free Monoid on d-generators

1 Fix an integer d ≥ 1. A word of length n is any finite string
of letters w = w1...wn where wi ∈ {1,2...,d}.

2 Let Fd denote the free monoid on d generators, where
elements are words, the operation is the concatenation of
words, and the neutral element is the empty word ∅.

3 We have map from Fd to itself namely transposition
where wT = wnwn−1...w1.

4 Given a non-commutative in-determinant z = (z1, ..., zd),
we write

zw = zw1zw2 ...zwn

for example if d ≥ 4, and w = 11421 we have

zw = z2
1z4z2z1.



Commutative Setting Non-Commutative Setting Connection to NC-Function Theory References

Non-Commutative Formal RKHS

Formal Power Series

1 We denote the set of all formal power series with
coefficients in E by

E⟨⟨z⟩⟩ :=
{∑
α∈Fd

fαzα : fα ∈ E
}
.

2 E⟨z⟩ denotes all formal power series with finite support (i.e.
polynomials).

3 Given another non-commuting indeterminate
w = (w1, ...,wd) we denote E⟨⟨z,w⟩⟩ the formal power
series in z and w .
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Non-Commutative Formal RKHS

Non-Commutative Formal RKHS (NFRKHS)

Definition
Let E be a Hilbert space, and z = (z1, ..., zd ) non-commuting
indeterminants. A linear subspace

HE,nc ⊆ E⟨⟨z⟩⟩

is called a Non-commutative Formal RKHS (NFRKHS) when:

1 HE,nc comes equipped with an inner product which turns it into a
Hilbert space.

2 For each v ∈ Fd , the map Φv : HE,nc → E given by∑
α∈Fd

fαzα 7→ fv

is bounded.



Commutative Setting Non-Commutative Setting Connection to NC-Function Theory References

Non-Commutative Formal RKHS

How Does Reproducing Kernels Arise?

1 Since coefficients uniquely determine the power-series we
obtain a standard vector valued RKHS by viewing the
coefficients as functions (fα) : Fd → E .

2 Obtain a vector valued reproducing kernel

(α, β) 7→ Kα,β : Fd × Fd → B(E).

3 This induces a formal power series

K (z,w) =
∑

α,β∈Fd

Kα,βzαwβT ∈ B(E)⟨⟨z,w⟩⟩

which is positive in a sense, satisfy a reproducing property
(shown on next slide).
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Non-Commutative Formal RKHS

NF Reproducing Kernel

For H = HE,nc

1 For fixed α ∈ Fd , and e ∈ E we denote

Kα(z)e :=
∑
β

Kα,βe zβ ∈ H

2 We denote

K (·,w)e :=
∑
α

Kα(z)e wαT ∈ H⟨⟨w⟩⟩

3 And we have a reproducing property

⟨f ,K (·,w)e⟩H×H⟨⟨w⟩⟩ = ⟨f (w),e⟩E⟨⟨w⟩⟩×E (8)

which holds for all f ∈ H, e ∈ E . 5

5Write out definition on black board
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Non-Commutative Formal RKHS

NF Reproducing Kernels

Definition
We say the formal power series

K (z,w) =
∑

α,β∈Fd

Kα,βzαwβT ∈ B(E)⟨⟨z,w⟩⟩

is a Non-commutative Formal reproducing kernel for HE,nc
when:

1 Kα(z)e ∈ HE,nc for all α ∈ Fd and e ∈ E .
2 K (z,w) satisfy the reproducing property in (8).

It can be shown that each NF reproducing kernel uniquely
determines a NF RKHS just (see [3] for details).
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Non-Commutative Formal RKHS

NF Multipliers

We also have multipliers in this formal setting.
A formal power series

F =
∑
α

Fαzα ∈ B(E , E∗)⟨⟨z⟩⟩

can act on elements in E⟨⟨z⟩⟩ via a Cauchy product. That is for
f =

∑
α

fαzα ∈ E⟨⟨z⟩⟩ we define

F f :=
∑
α

( ∑
α=βθ

Fβfθ
)

zα ∈ E∗⟨⟨z⟩⟩.
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Non-Commutative Formal RKHS

NF Multipliers

1 Given two NF RKHS HE,nc , and HE∗,nc we say
F ∈ B(E , E∗)⟨⟨z⟩⟩ is a left-multiplier from HE,nc → HE∗,nc
to mean that

F f ∈ HE∗,nc

for all f ∈ HE,nc .
2 Again by an application of the Closed Graph theorem, and

continuity of evaluation, one observe that each multipliers
induces a bounded operator.

3 When E = E∗ we denote Mnc(E) the multiplier algebra
equipped with the operator norm.
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NC-Hardy Space

NC-Hardy Space

Definition
Let E be a Hilbert space, and z = (z1, ..., zd) non-commuting
in-determinants. Define

H2
nc,E :=

{
f =

∑
α∈Fd

fαzα : ||f ||2 :=
∑
α∈Fd

||fα||2E < ∞
}
.

1 We equip H2
nc,E with the ℓ2-inner product induced by E :

⟨
∑
α∈Fd

fαzα,
∑
β∈Fd

gβzβ⟩ :=
∑
α∈Fd

⟨fα,gα⟩E

and it follows immediately that evaluation functions are
bounded turning H2

nc,E into a NFRKHS.
2 When E = C we refer to H2

nc as the "NC-Hardy space".
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NC-Hardy Space

NF Reproducing Kernel

What is the NF-reproducing kernel of H2
E,nc?

1 Consider Kα,β = δα,β ⊗ IE : Fd × Fd → B(E).
2 One sees that Kα(z)e = ezα ∈ H2

E,nc , and checks that

Knc(z,w) :=
∑
α∈Fd

zαwαT

satisfy the reproducing property in (8). Hence we have the
NF-reproducing kernel for H2

E,nc .
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Characterization of the Non Commutative Schur Class

Characterization of the Non Commutative Schur Class

Theorem (Ball,Vinnikov - 2003,2005 [3],[1])
Let F ∈ MNC(E , E∗). The following are equivalent:

1 F is a contractive multiplier.

2 There exists an auxiliary Hilbert space H, and a unitary
colligation

U =


A1 B1
... ...
Ad Bd
C D

 :
H
⊕
E

→
H⊕d

⊕
E∗

where F can be realises as a formal power series

F (z) = D+
d∑

i=1

(
∑
α∈F

CAαBizα)zj = D+C(I−Z (z)A)−1Z (z)B (9)
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Characterization of the Non Commutative Schur Class

Characterization of the Schur Class
continued

Theorem (Ball,Vinnikov - 2003,2005 [3],[1])
3 The formal power series KF ∈ B(E∗)⟨⟨z,w⟩⟩ given by

KF (z,w) = Knc(z,w)− F (z)Knc(z,w)F (w)∗

defines an NF reproducing kernel.

4 The colligation U that realizes F can be chosen contractive.

For F (z) ∈ B(E , E∗)⟨⟨z⟩⟩ we define F (z)∗ :=
∑

F ∗
αzαT

, and the
product is defined by Cauchy products of formal power series.



Commutative Setting Non-Commutative Setting Connection to NC-Function Theory References

Intro to NC-Function Theory

1 We define the row-ball

Bd
row :=

{
X =

[
X1 ... Xd

]
∈

∞⊔
n=1

Mn(C)d : ||XX ∗|| < 1
}

2 We have two operations on Bd
row . Given X ,Y ∈ Bd

row at
level n, and m respectively, and single invertable matrix
S ∈ Mn(C):

X ⊕ Y :=
[
X1 ⊕ Y1 ... Xd ⊕ Yd

]
S−1XS :=

[
S−1X1S ... S−1XdS

] (10)

3 We say f is an nc-function on Bd
row to mean f is graded,

preserves direct sums, and respects similarities.
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Intro To NC-Function Theory

4 We denote H∞
row all uniformly bounded nc-funtions on the

the row-ball. That is nc functions f on the row ball such that

||f ||∞ := sup
Z∈Bd

row

||f (X )|| < ∞

where the norm on the right is taken in Mn(C) when X is at
level n.

5 For example all co-ordinate function fi(Z ) = Zi are in H∞
row ,

and polynomials are in H∞
row .

6 It a well know result that for nc-functions: Locally bounded
at each level implies analytic at each level. Hence it follows
that every function in H∞

row is analytic at every level.
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NC-Hardy Space As a Space of NC Functions

1 We can view elements of the NC-Hardy space as
nc-functions on the row ball.

2 Given a formal power series
∑

α∈Fd

cαzα ∈ H2
nc one can

show that for each fixed X ∈ Bd
row

∞∑
n=0

∑
|α|=n

cαXα

is norm convergent in Mn(C), where X is at level n.

3 Define F (X ) =
∞∑

n=0

∑
|α|=n

cαXα, and one uses the fact that

polynomials are nc functions to show F is an nc-function.
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NC-functions and Left Multipliers

1 The connection between H∞
row and Left-Multipliers of H2

nc ,
was first seen by Arias and Popescu working over the
operatorial closed unit ball, and independently by Davidson
and Pitts in the language of operator algebras.

2 But recently Salomon, Shalit, Shamovich ([8]) formulated
the result in the nc-function theory language over the
row-ball.

Theorem Salomon, Shalit, Shamovich (2018) [8]

Let Φ be a nc-function on Bd
row .

Then Φ is a left-multiplier of H2
nc if, and only if Φ ∈ H∞

nc .
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Conclusion

Given a contractive
multiplier F of the

Drury-Averson space

There exists a transfer
function Φ that realizes F

Φ is a nc-function bounded
by 1 on the row ball

Φ 6is a left multiplier of
the NC-Hardy Space and
agree with F on level 1

Given a contractive multiplier
F of the NC-Hardy space

There exists a transfer
function Φ that realizes F

Φ restricted to level one
is a multiplier of the

Drury-Averson space

1Although Φ is not unique, we can chose Φ to have the same norm as F .
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Some Applications

1 NC-Inner Outer Factorization (Jury, Martin, Shamovich [6])
2 Characterization of the Extreme points of the multiplier

algebra of the Drury-Averson space.
(Jury, Martin, Hartz [5], [4])
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