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Abstract

A unifying theme in both probability theory and operator
theory is the study of functions of elements—random variables
or operators—and what happens when we apply a linear func-
tional such as expectation or trace to them. In analogy with
probability, the more functions of a random variable you can in-
tegrate, the “nicer” the variable; likewise, in operator theory, the
broader the functional calculus available, the more regular the
operator. This exposition is intended as a big-picture overview
highlighting the parallel structures between probability and op-
erator theory. For clarity of exposition, many technical details
and subtleties are omitted.

Functions of Random Variables and Oper-

ators

1. Linear functionals and algebras

Both settings begin with an algebra (vector space) of “observables”
equipped with a distinguished linear functional.

• In classical probability, the algebra is the commutative C∗-
algebra

L−∞(Ω,F ,P),
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whose elements are random variables with all finite moments. The
expectation

E[·] : L∞ → C

is a positive, normalized linear functional. One does not have
to assume all finte moments, but if not one might reduce from
algebra-structure to vector space structure.

• In operator theory, we study a (noncommutative) C∗-algebra
A ⊂ B(H), and a state

φ : A → C, φ linear, positive, φ(1) = 1.

The pair (A, φ) plays the role of a “noncommutative probability
space”.

2. Functions of elements

In both settings, we can apply scalar functions to our basic objects.

Setting Object Functional calculus

Probability X (random variable) f(X) defined by composition

Operator theory A (self-adjoint operator) f(A) defined by holomorphic, con-
tinuous, or Borel functional calculus

In probability theory, finite expectation of f(X) gives valuable in-
formation about the distribution PX of X. Indeed for example:

1. E[|X|] < ∞ if, and only if x ∈ L1(R,PX).

2. E[|X|n] < ∞ if, and only if xn ∈ L1(R,PX).

3. E[eX ] < ∞ if, and only if ex ∈ L1(R,PX).
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3. Applying linear functionals

Once functions of elements make sense, we examine the quantities

E[f(X)] or φ(f(A)).

In the commutative case,

E[f(X)] =

∫
f(x) dµX(x),

where µX is the law of X. In the operator case,

φ(f(A)) =

∫
f(x) dµA(x),

where µA is the spectral measure of A with respect to φ. Thus, expec-
tations of functions of random variables correspond to traces or states
applied to functions of operators.

4. Moments and distributions

Moments store information about the “distribution” in both worlds:

E[Xn] ↔ φ(An).

Multivariate case: In the commutative setting, the product space is a
natural habitat for the joint-distribution of independent random vari-
ables X1, · · ·Xn which is the product measure of the distributions of Xi.
This is the law of X = (X1, · · · , Xn). In the noncommutative setting,
the definition of A1, · · · , An being free is such that the mixed moments

φ(Ai1Ai2 · · ·Aik)

play the role of the joint distribution of the tuple (A1, . . . , Ag), in that
they only depend on the individual moments of A1, · · · , An. Although
the dependence is very complicated.

The takeaway is that free-independence allows one to compute the
”joint-distribution” in terms of the individual distribution.
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5. Commutative vs. non-commutative probability

The commutative and non-commutative theory becomes visible when
we work with a n-tuple of observables which is either classically inde-
pendent random variables, or freely independent bounded operators.

• Classical probability corresponds to the commutative case, where
all random variables commute:

ab = ba for all a, b ∈ L∞.

Then, the Gelfand representation identifies L∞(Ω) with continu-
ous functions on a measure space, and expectation is integration
with respect to a classical probability measure.

• Free (or noncommutative) probability generalizes this to
noncommutative algebras (A, φ), where the elements (“noncom-
mutative random variables”) need not commute. Here the dis-
tribution of a variable is determined by all its noncommutative
moments, and notions of independence are replaced by noncom-
mutative ones, such as freeness.
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6. Convergence of expectations

A major theme in both subjects is understanding convergence through
expectations.

• In probability theory:

Xn
d−→ X ⇐⇒ E[f(Xn)] → E[f(X)] ∀f bounded, continuous.

• In operator algebras:

tr(p(A
(n)
1 , . . . , A(n)

g )) → tr(p(A1, . . . , Ag)) ∀p noncommutative polynomial.

7. Transforms of Our Observables

Laplace Transform (Moment Generating Function, MGF)

For a real random variable X, the Laplace transform is defined by

MX(t) = E[etX ],

and assume MX exists on open neiborhood of 0. Expanding etX gives

MX(t) =
∞∑
n=0

tn

n!
E[Xn],

so derivatives at t = 0 yield the moments of X. However, the MGF
may fail to exist for many distributions (for example, the Cauchy distri-
bution). When it exists in a neighborhood of 0, it uniquely determines
the law of X.

Fourier Transform (Characteristic Function)

The characteristic function of X is

ϕX(t) = E[eitX ],

which always exists since |eitX | = 1. It uniquely determines the distri-
bution of X, and its derivatives at t = 0 (when they exist ) recover the
moments:

ϕ
(n)
X (0) = inE[Xn].

Characteristic functions play a central role in limit theorems such as
the Central Limit Theorem via Lévy’s continuity theorem.
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Cauchy (Stieltjes) Transform

For a real-valued random variable X with law µ, the Cauchy transform
(or Stieltjes transform) is defined by

Gµ(z) =

∫
R

1

z − x
dµ(x), z ∈ C+.

This transform is analytic on the upper half-plane and determines the
measure via the boundary limit

µ(dx) = − 1

π
lim
ε↓0

ℑGµ(x+ iε) dx.

Expanding at infinity gives

Gµ(z) =
1

z
+

E[X]

z2
+

E[X2]

z3
+ · · · ,

so the Cauchy transform also encodes all moments. In the noncommu-
tative setting, this definition only makes sense for self-adjoint operators
X, ensuring the existence of a spectral measure and that (z −X)−1 is
well-defined for z ∈ C+.

Voiculescu’s Use in Free Probability

Voiculescu’s key insight was to use the Cauchy transform to build an
analytic framework for distributions of noncommutative (free) random
variables.

For a self-adjoint X in a tracial W ∗-probability space, define

GX(z) = φ[(z −X)−1], z ∈ C+.

FromGX one defines the reciprocal FX(z) = 1/GX(z) and theVoiculescu
transform

φX(z) = F−1
X (z)− 1

z
.

The crucial property is that for freely independent X and Y ,

φX+Y (z) = φX(z) + φY (z).

This mirrors how the logarithm of the characteristic function linearizes
classical convolution, but in the free (noncommutative) setting it is the
Cauchy transform that plays this role.
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8. Summary

Concept Classical probability Operator / free probabil-
ity

Algebra of observables L−∞(Ω) (commutative) C∗-algebra A (possibly non-
commutative)

Element Random variable X Operator A

Linear functional Expectation E State or trace φ

Function of element f(X) pointwise f(A) via functional calculus

Distribution Law of X Spectral measure / φ-
moments

Independence Classical independence Freeness

Convergence Weak convergence of
laws

Convergence in ∗-moments /
trace

In this way, classical probability theory and operator theory can be
viewed as different aspects of the same overarching idea: studying how
linear functionals—expectations or traces—interact with functions of
the elements in their respective algebras.
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