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Abstract

A unifying theme in both probability theory and operator
theory is the study of functions of elements—random variables
or operators—and what happens when we apply a linear func-
tional such as expectation or trace to them. In analogy with
probability, the more functions of a random variable you can in-
tegrate, the “nicer” the variable; likewise, in operator theory, the
broader the functional calculus available, the more regular the
operator. This exposition is intended as a big-picture overview
highlighting the parallel structures between probability and op-
erator theory. For clarity of exposition, many technical details
and subtleties are omitted.

Functions of Random Variables and Oper-
ators

1. Linear functionals and algebras

Both settings begin with an algebra (vector space) of “observables”
equipped with a distinguished linear functional.

e In classical probability, the algebra is the commutative C*-
algebra
L™(Q, F,P),



whose elements are random variables with all finite moments. The
expectation
E[]: L>* = C

is a positive, normalized linear functional. One does not have
to assume all finte moments, but if not one might reduce from
algebra-structure to vector space structure.

e In operator theory, we study a (noncommutative) C*-algebra
A C B(H), and a state

p: A—C, ¢ linear, positive, (1) = 1.

The pair (A, ¢) plays the role of a “noncommutative probability
space”.

2. Functions of elements

In both settings, we can apply scalar functions to our basic objects.

Setting Object Functional calculus

Probability X (random variable) | f(X) defined by composition

Operator theory | A (self-adjoint operator) | f(A) defined by holomorphic, con-
tinuous, or Borel functional calculus

In probability theory, finite expectation of f(X) gives valuable in-
formation about the distribution Px of X. Indeed for example:

1. E[|X|] < o if, and only if z € L}(R, Px).
2. E[|X|"] < o if, and only if 2" € L' (R, Px).

3. EleX] < oo if, and only if e® € LY(R, Px).



3. Applying linear functionals

Once functions of elements make sense, we examine the quantities

E[f(X)] or ¢(f(A)).

In the commutative case,
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where px is the law of X. In the operator case,
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where 114 is the spectral measure of A with respect to . Thus, expec-
tations of functions of random variables correspond to traces or states
applied to functions of operators.

4. Moments and distributions

Moments store information about the “distribution” in both worlds:
E[X"] <+  @(A").

Multivariate case: In the commutative setting, the product space is a
natural habitat for the joint-distribution of independent random vari-
ables X1, - -+ X,, which is the product measure of the distributions of Xj.
This is the law of X = (X3, -+, X,,). In the noncommutative setting,
the definition of Ay, --- , A, being free is such that the mixed moments

(A Aiy -+ Agy)

play the role of the joint distribution of the tuple (4y,...,A4,), in that
they only depend on the individual moments of Ay,---, A,. Although
the dependence is very complicated.

The takeaway is that free-independence allows one to compute the
”joint-distribution” in terms of the individual distribution.



5. Commutative vs. non-commutative probability

The commutative and non-commutative theory becomes visible when
we work with a n-tuple of observables which is either classically inde-
pendent random variables, or freely independent bounded operators.

e Classical probability corresponds to the commutative case, where
all random variables commute:

ab=ba for all a,b e L.

Then, the Gelfand representation identifies L>°(§2) with continu-
ous functions on a measure space, and expectation is integration
with respect to a classical probability measure.

e Free (or noncommutative) probability generalizes this to
noncommutative algebras (A, ¢), where the elements (“noncom-
mutative random variables”) need not commute. Here the dis-
tribution of a variable is determined by all its noncommutative
moments, and notions of independence are replaced by noncom-
mutative ones, such as freeness.



6. Convergence of expectations

A major theme in both subjects is understanding convergence through
expectations.

e In probability theory:
X, 5 X = E[f(X,)] — E[f(X)] Vf bounded, continuous.

e In operator algebras:

tr(p(Agn)7 . ,Aé”))) — tr(p(A1,...,4,)) Vp noncommutative polynomial.

7. Transforms of Our Observables
Laplace Transform (Moment Generating Function, MGF')

For a real random variable X, the Laplace transform is defined by
Mx(t) = E[e"],

and assume My exists on open neiborhood of 0. Expanding !X gives

o0 n

My(t) = 3 B[XT)
n=0

so derivatives at ¢ = 0 yield the moments of X. However, the MGF

may fail to exist for many distributions (for example, the Cauchy distri-

bution). When it exists in a neighborhood of 0, it uniquely determines

the law of X.

Fourier Transform (Characteristic Function)

The characteristic function of X is

ox(t) = E[e"],
which always exists since || = 1. It uniquely determines the distri-
bution of X, and its derivatives at t = 0 (when they exist ) recover the
moiments:

¥(0) =i"E[X"],
Characteristic functions play a central role in limit theorems such as
the Central Limit Theorem via Lévy’s continuity theorem.
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Cauchy (Stieltjes) Transform

For a real-valued random variable X with law p, the Cauchy transform
(or Stieltjes transform) is defined by

GH(Z)Z/R L @), sect

Z—X

This transform is analytic on the upper half-plane and determines the
measure via the boundary limit

1
p(dr) = ——lim G, (z + i) dz.

T el0
Expanding at infinity gives
1 E[X] E[X?
G (2) = = ..
u(2) . + o + o +-

so the Cauchy transform also encodes all moments. In the noncommu-
tative setting, this definition only makes sense for self-adjoint operators
X, ensuring the existence of a spectral measure and that (z — X)™! is
well-defined for z € C*.

Voiculescu’s Use in Free Probability

Voiculescu’s key insight was to use the Cauchy transform to build an
analytic framework for distributions of noncommutative (free) random
variables.

For a self-adjoint X in a tracial W*-probability space, define

Gx(2) =o[(z — X)), 2€CT.

From Gx one defines the reciprocal Fx(z) = 1/Gx(z) and the Voiculescu

transform
_ 1
px(2) = Fy'(2) = e

The crucial property is that for freely independent X and Y,
px+v(2) = ¢x(2) + oy (2).

This mirrors how the logarithm of the characteristic function linearizes
classical convolution, but in the free (noncommutative) setting it is the
Cauchy transform that plays this role.
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8. Summary

Concept

Classical probability

Operator / free probabil-
ity

Algebra of observables

L) (commutative)

C*-algebra A (possibly non-
commutative)

Element

Random variable X

Operator A

Linear functional

Expectation E

State or trace ¢

Function of element

f(X) pointwise

f(A) via functional calculus

Distribution Law of X Spectral ~ measure /-
moments

Independence Classical independence | Freeness

Convergence Weak convergence of | Convergence in *-moments /

laws

trace

In this way, classical probability theory and operator theory can be
viewed as different aspects of the same overarching idea: studying how
linear functionals—expectations or traces—interact with functions of
the elements in their respective algebras.




