

# Zeros of Stable NC-Polynomials

Vikus J.v.Rensburg

## Introduction

Classically, a polynomial in one complex variable with no zeroes in the closed unit disk  $\{|z| \leq 1\}$  has no zeroes in some open disk with radius  $R > 1$ . This behavior carries over to polynomials in several complex variables with no zeroes in the  $\ell^\infty$ -closed-unit-ball in  $\mathbb{C}^g$ . The purpose of this exposition is to showcase how the same behavior carries over to nc-polynomials. In the process, we see how the behavior of nc-polynomials are determined by evaluation up to some large finite size that depends on the degree of the polynomial.

## NC-Polynomials

We let  $x = (x_1, \dots, x_g)$  denote a  $g$ -tuple of non-commuting indeterminates, and  $\mathbb{F}_g^+$  the free monoid on  $g$  symbols  $\{1, 2, \dots, g\}$ , with neutral element denoted  $\emptyset$ . Recall a monoid is almost a group, but every element need not have an inverse. Given a word  $w = i_1 i_2 \cdots i_k \in \mathbb{F}_g$ , we write

$$x^w = x_{i_1} x_{i_2} \cdots x_{i_k}.$$

We let  $\mathbb{C}\langle x_1, x_2, \dots, x_g \rangle = \mathbb{C}\langle x \rangle$  denote the algebra of non-commuting polynomials in  $g$  indeterminates  $x_1, \dots, x_g$ . As a set this is the vector space of all formal linear combinations of monomials  $x^w$ ,  $w \in \mathbb{F}_g^+$ . And multiplication is done by concatenation of monomials in. In fact, this is a  $*$ -algebra where we define  $*$  on a word  $w = i_1 i_2 \cdots i_k$  by

$$(x^w)^* := x_{i_k}^* \cdots x_{i_2}^* x_{i_1}^*, \quad (x_j^*)^* := x_j.$$

One checks that  $*$  defines an involution on  $\mathbb{C}\langle x, x^* \rangle$ .

Since the set of monomials forms a basis for  $\mathbb{C}\langle x, x^* \rangle$  (by construction) every nc-polynomial has a unique expression

$$p(x, x^*) = \sum_{w \in \mathbb{F}_g^+} a_w x^w,$$

where  $x^\emptyset := 1$ .

We are also interested in polynomials with matrix coefficients; we define

$$M_k(\mathbb{C})\langle x, x^* \rangle := M_k(\mathbb{C}) \otimes \mathbb{C}\langle x, x^* \rangle,$$

the algebraic tensor product of  $*$ -algebras over  $\mathbb{C}$ . Elements of  $M_k(\mathbb{C})\langle x, x^* \rangle$  can be written

$$\sum_{i=1}^k A_i \otimes p_i(x, x^*) = \sum_i A_i \otimes \left( \sum_w a_w^i x^w \right) = \sum_w \tilde{A}_w x^w,$$

where  $\otimes$  denotes the algebraic tensor product. We define

$$\deg(p) := \max\{ |w| : A_w \neq 0 \}.$$

## Evaluation

So far we have only considered  $\mathbb{C}\langle x, x^* \rangle$  and  $M_k(\mathbb{C})\langle x, x^* \rangle$  as formal algebraic objects. For purposes of analysis we want to evaluate these nc-polynomials on  $g$ -tuples of matrices

$$X = (X_1, \dots, X_g) \in (M_d(\mathbb{C}))^g$$

for all  $d \in \mathbb{N}$ , or even for  $X \in \mathcal{A}^g$  where  $\mathcal{A}$  is a  $*$ -algebra of operators.

Informally, given  $X \in M_d(\mathbb{C})^g$  and  $p \in M_k(\mathbb{C})\langle x, x^* \rangle$ ,  $p(X)$  is just replacing  $x_i, x_i^*$  with  $X_i, X_i^*$ .

Formally, given a tuples  $X \in M_d(\mathbb{C})^g$  we define a  $*$ -homomorphism

$$\hat{X} : \mathbb{C}\langle x, x^* \rangle \rightarrow M_d(\mathbb{C})$$

by

$$\hat{X}(p) = \sum_w a_w X^w, \quad p = \sum_w a_w x^w ..$$

And

$$I_k \otimes \hat{X} : M_k(\mathbb{C}) \otimes \mathbb{C}\langle x, x^* \rangle$$

by

$$(I_k \otimes \hat{X})(\sum A_w \otimes p_w) = \sum A_w \otimes \hat{X}(p_w)$$

## Norms

A key role in this discussion is played by operator-space norms that preserve the structure across all matrix levels. For this exposition we make use of the *minimal* operator-space structure that one can equip on  $\mathbb{C}^g$ , obtained by starting with the  $\ell^\infty$ -norm.

In this setting, the natural multivariate generalization of the closed unit disk for nc-polynomials is

$$\bigcup_{d=1}^{\infty} \{ Z \in M_d(\mathbb{C})^g : \|Z\|_{\min(\ell^\infty)} \leq 1 \},$$

where

$$\|Z\|_{\min(\ell^\infty)} = \max_{1 \leq i \leq g} \|Z_i\|,$$

and each  $\|Z_i\|$  denotes the usual operator norm on  $M_d(\mathbb{C})$ .

# Stable Polynomials

We say an nc-polynomials is *stable* with respect to  $\min(\ell^\infty)$  to mean

$$\det(p(Z)) \neq 0$$

for all  $d \in \mathbb{N}$ ,  $Z \in M_d(\mathbb{C})^g$  such that  $\|Z\|_{\min(\ell^\infty)} \leq 1$ . We evaluate an nc-polynomial  $p$  on tuples of matrices of all sizes. What is interesting is that behavior of  $p$  is only determined by evaluation up to some finite level, where the level depends on the degree of  $p$ .

Given a word  $w = i_1 i_2 \cdots i_m$ , by a *tail* of  $w$  we mean any string  $i_j i_{j+1} \cdots i_m$  where  $1 \leq j \leq m$ .

**Lemma.** *Let  $p \in M_k(\mathbb{C})\langle x, x^* \rangle$ , and  $p(0) = I_k$ . If  $\det(p(Z)) \neq 0$  for all  $Z \in \bigcup_{d=1}^{\infty} M_d(\mathbb{C})^g$  such that  $\|Z\|_{\min(\ell_g^\infty)} \leq 1$ , then there exists an  $R > 1$  (independent of level) such that  $\det(p(Z)) \neq 0$  for all  $Z \in \bigcup_{d=1}^{\infty} M_d(\mathbb{C})^g$  such that  $\|Z\|_{\min(\ell_g^\infty)} < R$ .*

*Proof.* Let

$$p(x, x^*) = \sum_{|w| \leq n} A_w x^w$$

where  $A_w \in M_k(\mathbb{C})$  and  $n$  denotes the degree of  $p$ .

By compactness at each level  $m$ , there exists  $R_m > 1$  such that  $\det(p(Z)) \neq 0$  for all  $Z \in M_m(\mathbb{C})^g$  such that  $\|Z\|_{\min(\ell_g^\infty)} < R_m$ . Indeed for  $m$  fixed, the ball  $\{Z \in M_m(\mathbb{C})^g : \|Z\|_{\min(\ell_g^\infty)} \leq 1\}$  is compact and the preimage of 0 under that function  $\det(p(Z))$  is closed, with the intersection between the two empty. Therefore, the distance between the two sets in  $M_m(\mathbb{C})^g$  is strictly positive, so by the triangle the conclusion follows.

Let  $N := \sum_{j=0}^n j \cdot g^j$  and

$$R := \min\{R_1, \dots, R_N\} > 1$$

where the number of levels to consider depends on the degree of  $p$ .

We claim that for all  $N$ , and  $Z \in M_N(\mathbb{C})$

$$\det(p(Z)) \neq 0 \quad \text{for all } \|Z\|_{\min(\ell^\infty)} < R.$$

By way of contradiction, suppose not. That is suppose there exists  $N' > N$ , and  $Z \in M_{N'}(\mathbb{C})^g$  such that  $\|Z\|_{\min(\ell^\infty)} < R$  but  $\det(p(Z)) = 0$ . Since  $p(Z) : \mathbb{C}^k \otimes \mathbb{C}^{N'} \rightarrow \mathbb{C}^k \otimes \mathbb{C}^{N'}$  is not invertible, it follows that  $p(Z)$  has a non-trivial kernel. Let  $v \in \mathbb{C}^k \otimes \mathbb{C}^{N'}$  non-zero such that

$$\sum_{|w| \leq n} (A_w \otimes Z^w)v = 0.$$

Define

$$\mathcal{K} := \text{span} \left\{ (I_k \otimes Z^w)v : w \text{ is a tail of } w_0 \text{ and } A_{w_0} \neq 0 \right\}$$

Since  $p(0) = I_k$  we have  $(I_k \otimes Z^\emptyset)v = v \in \mathcal{K}$ . Also, for each  $A_w \neq 0$  the number of linearly independent vectors contributed to  $\mathcal{K}$  is at most  $|w|$ . Indeed if  $w = i_1 i_2 \cdots i_{|w|}$  then we add  $Z_{i_{|w|}} v, Z_{i_{|w|-1}} Z_{i_{|w|}} v, \dots, Z_{i_1} \cdots Z_{i_{|w|-1}} Z_{i_{|w|}} v$  to the set before taking the span. It follows that  $N = \sum_{j=0}^n j \cdot g^j$  is an upper bound for the dimension of  $\mathcal{K}$ .

Denote the orthogonal projection onto  $\mathcal{K}$  by  $P_{\mathcal{K}}$ . Let us construct the tuple  $T = (T_1, \dots, T_g)$  from  $T_i : \mathcal{K} \rightarrow \mathcal{K}$  by

$$T_i(u) := P_{\mathcal{K}}(I_k \otimes Z_i)|_{\mathcal{K}}(u).$$

First, observe that

$$p(T)v = p(Z)v = 0.$$

Indeed, it suffices to show that

$$T^w v = (I_k \otimes Z^w)v \tag{1}$$

for all  $w$  such that  $A_w \neq 0$ . Because then  $(A_w \otimes I_{N'})T^w v = (A_w \otimes I_{N'})(I_k \otimes Z^w)v = (A_w \otimes Z^w)v$ .

We proceed by induction on the length of monomial words. If  $|w| = 1$ , then  $w = i$  and

$$T_i(v) = P_{\mathcal{K}}(I_k \otimes Z_i)|_{\mathcal{K}}(v) = P_{\mathcal{K}}(I_k \otimes Z_i)(v) = (I_k \otimes Z_i)(v).$$

The first equality follows from  $v \in \mathcal{K}$ , and the second from  $Z_i v \in \mathcal{K}$ . For the inductive step, suppose equation 1 holds for all words  $w$  of length  $m \geq 1$  such that  $A_w \neq 0$ , and let  $|w| = m + 1$ . That is  $w = i_1 \cdots i_{m+1}$ . Then

$$\begin{aligned} T_w(v) &= T_{i_1} \cdots T_{i_m} T_{i_{m+1}}(v) \\ &= T_{i_1}(I_k \otimes Z_{i_2} \cdots Z_{i_{m+1}})(v) \\ &= (I_k \otimes Z^w)(v) \end{aligned}$$

where the second equality follows from the inductive step, and the last from the construction of  $\mathcal{K}$ .

But now  $T = (T_1, \dots, T_g)$  is a  $g$ -tuple acting on a space with dimension at most  $N$ , such that  $\det(p(T)) = 0$  and

$$\|T\|_{\min(\ell^\infty)} = \max_{i=1}^g \|T_i\| = \max_{i=1}^g \|P_{\mathcal{K}}(I_k \otimes Z_i)|_{\mathcal{K}}\| \leq \max_{i=1}^g \|I_k \otimes Z_i\| = \max_{i=1}^g \|Z_i\| < R$$

contradicting our choice of  $R$ .

□